Extensions 1→N→G→Q→1 with N=C22 and Q=C2xDic13

Direct product G=NxQ with N=C22 and Q=C2xDic13
dρLabelID
C23xDic13416C2^3xDic13416,225

Semidirect products G=N:Q with N=C22 and Q=C2xDic13
extensionφ:Q→Aut NdρLabelID
C22:1(C2xDic13) = D4xDic13φ: C2xDic13/Dic13C2 ⊆ Aut C22208C2^2:1(C2xDic13)416,155
C22:2(C2xDic13) = C2xC23.D13φ: C2xDic13/C2xC26C2 ⊆ Aut C22208C2^2:2(C2xDic13)416,173

Non-split extensions G=N.Q with N=C22 and Q=C2xDic13
extensionφ:Q→Aut NdρLabelID
C22.1(C2xDic13) = D4.Dic13φ: C2xDic13/Dic13C2 ⊆ Aut C222084C2^2.1(C2xDic13)416,169
C22.2(C2xDic13) = C52.D4φ: C2xDic13/C2xC26C2 ⊆ Aut C221044C2^2.2(C2xDic13)416,40
C22.3(C2xDic13) = C23:Dic13φ: C2xDic13/C2xC26C2 ⊆ Aut C221044C2^2.3(C2xDic13)416,41
C22.4(C2xDic13) = C52.10D4φ: C2xDic13/C2xC26C2 ⊆ Aut C222084C2^2.4(C2xDic13)416,43
C22.5(C2xDic13) = C23.21D26φ: C2xDic13/C2xC26C2 ⊆ Aut C22208C2^2.5(C2xDic13)416,147
C22.6(C2xDic13) = C4xC13:2C8central extension (φ=1)416C2^2.6(C2xDic13)416,9
C22.7(C2xDic13) = C26.7C42central extension (φ=1)416C2^2.7(C2xDic13)416,10
C22.8(C2xDic13) = C52:3C8central extension (φ=1)416C2^2.8(C2xDic13)416,11
C22.9(C2xDic13) = C52.55D4central extension (φ=1)208C2^2.9(C2xDic13)416,37
C22.10(C2xDic13) = C26.10C42central extension (φ=1)416C2^2.10(C2xDic13)416,38
C22.11(C2xDic13) = C22xC13:2C8central extension (φ=1)416C2^2.11(C2xDic13)416,141
C22.12(C2xDic13) = C2xC52.4C4central extension (φ=1)208C2^2.12(C2xDic13)416,142
C22.13(C2xDic13) = C2xC4xDic13central extension (φ=1)416C2^2.13(C2xDic13)416,143
C22.14(C2xDic13) = C2xC52:3C4central extension (φ=1)416C2^2.14(C2xDic13)416,146

׿
x
:
Z
F
o
wr
Q
<